PT PHYSIQUE

Equations de Maxwell
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OBJECTIFS DU CHAPITRE

» A la fin de ce chapitre, vous devez étre capable de :

Choisir et utiliser le modele idéalisé de distribution de charge
ou de courant qui correspond au probleme etudi€ ;

Ftablir et exploiter un bilan local de conservation des charges ;

Connaitre les equations de Maxwell dans leurs formulations
locales et globales ;

Ecrire et exploiter un bilan dénergie électromagnétique

(theoreme de Poynting).




| MILIEUX CONDUCTEUR

Milieu conducteur

On qualifie de conducteur un milieu, macroscopique ou mésoscopique, contenant un ensemble de
charges susceptibles de se déplacer sur une échelle grande devant le libre parcours moyen d’un de
ses constituants (ou devant le parametre de maille d’une structure cristalline).

Par opposition, un milieu non conducteur est dit « isolant ».

Bons conducteurs Mauvais conducteurs [solants
v (@' -m™) v (@' -m™T) v (@' -m™t)
Argent 6,1.107 Eau de mer 0,2 Huile minérale 21011
Cuivre 5,8.107 Silicium 4,3.1074 Verre 1.1071°

Or 4,5.107 Eau distillée 2.10~4 Quartz 2.10~17
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CHARGE ELECTRIQU
MODELE 3D

Densité volumique de charge

On appelle densité volumique de charge du point M, ou charge volumique, la grandeur notée p(M ),

exprimée en C - m—3, et définie par

0q
M

p(M) =<

ou 0q est la charge de I’élément mésoscopique centré en M de volume 0V'.

(M)

Charge macroscopique et densité volumique de charge

La charge macroscopique () d’un systeme matériel de volume V et de densité volumique de charge

Q= ///MGV p(M)dV (13.1)

p(M) s’exprime par
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Densité surfacique de charge

On appelle densité surfacique de charge du point M, ou charge surfacique, la grandeur scalaire

notée o(M), exprimée en C - m™2, et définie par

o(M) = $L(0)

ou 0q est la charge de 1’élément mésoscopique centré en M de surface 05S.

Charge macroscopique et densité surfacique de charge

La charge macroscopique ) d’un systéme matériel bi-dimensionnel de surface S et de densité
surfacique de charge o(M) s’exprime par
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Densité linéique de charge

On appelle densité linéique de charge du point M, ou charge linéique, la grandeur scalaire notée
A(M), exprimée en C-m™!, et définie par

oq

ANM) = 5/

~ (M)

ou 0q est la charge de 1’élément mésoscopique centré en M de longueur /.

Charge macroscopique et densité linéique de charge

La charge macroscopique ) d’un systeme matériel uni-dimensionnel de longueur L et de densité
linéique de charge A\(M) s’exprime par

Q = A(M)d¢
MeL




B DEPLACEMENT DES PORTEURS DE
B CHARGE & COURANT ELECTRIQUE

Charges libres, charges liées

On appelle « charges libres » les charges électriques capables de se déplacer sur des distances
grandes devant la longueur caractéristique microscopique, et « charges liées » les charges quais-

immobiles a 1’échelle microscopique.

Milieu conducteur Porteur(s) de charge

Métal électrons de charge q = —e
Solution ionique anions et cations de charge ¢ = +Ze
Plasma cations de charge ¢ = +Ze et électrons
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Courant électrique

On appelle courant électrique, la grandeur notée 7, exprimée en A, qui mesure la quantité de
charge 0q qui traverse une section donnée d’un milieu conducteur pendant 'intervalle de temps dt,

et vérifie :
0 dg
i(t) = —
dt
Phénomeéne Ordre de grandeur en A
Seuil de perception humaine 1.1073
Seuil de fibrillation cardiaque 75.1073

Fonctionnement d’un téléphone portable 0,35
Foudre 10.10% ~ 100.10°
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Vecteur densité volumique de courant

On appelle vecteur densité volumique de courant, la grandeur vectorielle notée 7, exprimeée en
A -m~2, et définie par :

N
= Z piv;
i=1

\ o, 7 . — . \ . \ ’ ’
ou p; est la densité volumique de charge et v; la vitesse moyenne, de 1’espece 7, a 1’échelle méso-
scopique .

Intensité et densité volumique de courant

L’intensité ¢ qui traverse une surface S d’un systeme macroscopique se calcule selon :

i = //MGS 7 (M) 7dS (13.2)

—> N
ou n est le vecteur normal a .S en M.
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On consideére un fil de cuivre de section s = 2,5 mm? qui support un courant continu I = 1 A.

. Exprimer et calculer le module 7 du vecteur densité volumique de courant.
On estime que chaque atome d’un cristal de cuivre libére 1,3 électron libre. En utilisant les données
ci-dessous, établir et calculer la densité volumique de charges libres py,.

. En déduire la vitesse moyenne des porteurs de charge.

Données :

1 =8960kg-m™3  Mcy, =69,5g - mol!
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Systeme tri-dimensionnel
L~/0~ce

Densité surfacique de courant

On appelle vecteur densité surfacique de cou-
ﬁ

rant, la grandeur vectorielle notée 7, expri-

mée en A - m~!, et définie par :

=z —>
J —Z(m)i

1=1

ou o; est la densité surfacique de charge et
—> . N RN « s

v, la vitesse moyenne de 1’espéece 7, a 1'échelle
mésoscopique .

Systeme bi-dimensionnel
e L,V

Systeme uni-dimensionnel
e, { KL

Densité linéique de courant

On appelle vecteur densité linéique de cou-
ﬁ

rant, la grandeur vectorielle notée j, expri-

mée en A, et définie par :

722)\1'?7;

1=1

ol \ est la densité linéique de charge et ¥;
la vitesse moyenne de l'espece 2, a 1’échelle
mésoscopique .




SN COURANT ELECTRIQUE -
B OD0LES DEGENERES

W,
I

Intensité et densité surfacique de cou- Intensité et densité linéique de courant

rant

L’intensité 7 qui traverse un point P d’un sys-
L’intensité ¢ qui traverse une courbe C' d'un teme uni-dimensionnel se calcule selon :

systeme bi-dimensionnel se calcule selon :
— - .
= J M) u=j(M)

P = / j(M)-nmdl N
MeC oll U est le vecteur unitaire colinéaire & j .

ot 7 est le vecteur normal au déplace-
ment élémentaire df et appartenant a la sur-
face dans laquelle se déplace les porteurs de
charge.
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N O <ERCICE D'APPLICATION 2

Soit un conducteur cylindrique C, d’axe Oz, de rayon R et parcouru par le vecteur densité de courant

—> ) T\ >
J = Jo€Xp (_5) z

1. Définir et exprimer I'intensité Iy qui traverse tout section droite de ce cylindre.
2. Que devient ce résultat si d <K R?

volumique suivant :

Soit un conducteur C de type feuille d’aluminium, de largeur L, de longueur ¢ et d’épaisseur e avec
e < £, L. On oriente cette feuille de sorte que la longueur soit sur 'axe Ox la largeur sur ’axe Oy et

’épaisseur soit sur I’axe Oz. Compte-tenu de 1’épaisseur négligeable de C, on modélise le vecteur densité

de courant par un vecteur densité de courant surfacique

>
Js = J0o€x

3. Définir et exprimer l'intensité Iy qui traverse la feuille d’aluminium.
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Loi locale de conservation de la charge électrique

Soit une distribution de charges, caractérisée par la densité volumique de charges piot et parcourue

— , .
par la densité volumique de courant j, ces deux grandeurs vérifient localement :

8ptot
ot

+divyj =0 (13.3)
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Loi intégrale de conservation de la charge

Soit un corps macroscopique, de volume V', de surface extérieure fermée Sy de charge Qo (t),
ﬁ , .
parcouru par un vecteur densité de courant j (M) vérifie :

dQ+ot # - 2
— -d 13.4
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Loi d’0Ohm locale

Dans un milieu linéaire, homogene et isotrope, et si le gradient de potentiel n’est pas trop élevé,
le vecteur densité volumique de courant vérifie la loi d’OHM locale :

%
] =

+E (13.5)

La grandeur 7 est appelée conductivité, son unité SIest Q! - m~1. On définit également la grandeur

résistivité p = —, son unité SI est {2 - m.
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On modélise un fil conducteur par un cylindre d’axe Oz, de longueur L, de section S et de conductivité

~. En régime permanent, un champ E = %ﬂ; régne dans le fil o V4 (resp. Vp) est le potentiel qui

régne en A (resp. B).

Va
O

. Exprimer le vecteur densité volumique de courant présent dans ce fil.

2. En déduire une expression du courant I en fonction de v, S, L et U = V4 — Vp la diftérence de

potentiel aux bornes du fil.

. En déduire une expression de la résistance R du fil en fonction de S, L et ~.

. Exprimer la puissance volumique JOULE cédée par le champ électromagnétique aux porteurs de
charge.

. En déduire la puissance JOULE cédée au matériau conducteur ?
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LOIS DE MAXWELL :
RELATIONS SOURCE — CHAMP

Loi de Maxwell - Gauss

La loi de MAXWELL-GAUSS relie le champ E & la densité volumique de charge qui lui a donné

naissance selon :

div(E) = £ (13.6)

ol g9 = == X 1079 F-m™! est la permittivité diélectrique du vide.
367

Loi de Maxwell - Ampere

\ . 9 ~ . Vd . . . Vd
La loi de MAXWELL-AMPERE relie le champ B a la densité volumique de courant qui lui a donné

naissance selon :

r0t(B) = p10J + Hoco . 5 (13.7)

ou g = 4m x 107"H - m~! est la perméabilité magnétique du vide.
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Loi de Maxwell-Faraday

ﬁ
La loi de MAXWELL-FARADAY décrit la structure du champ FE selon :

rot(E) = _9B

= (13.8)

Loi de Maxwell-Thomson

La loi de MAXWELL-THOMSON (Maxwell-Flux) décrit la structure du champ B selon :

div(B) = 0 (13.9)




LOIS DE MAXWELL @
FORMULATION LOCALE & INTEGRALE

Forme locale Forme intégrale
0 - dQ+o - —
—p—l—diV] =0 Qtt+#5(v)]'dsz
ot dt 0
1 P 2 33 int
iv(E) - - #s(v) -
I'Ot(B) = Mo ) + MOgOE ¢C B-dl = ,U()Iint + ,U()Idepl
. > OB dd
rot(F) = ——— e =

L ot - dt,
div(B) =0 9385(\/) divB-dS =0
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Un conducteur cylindrique, vide de charges, d’axe Oz, de rayon R et de longueur est placé dans un
—
champ magnétique variable B = By cos (wt) u,. Pour des raisons de symétries, le champ électrique ne

peut dépendre que de la variable r. On peut donc écrire
E(M) = E,(r)& + Eg(r)e} + +E.(r)e;

%
. Le champ B donné vérifie-t-il la relation de MAXWELL-THOMSON ?
z —>
. Ecrire la relation de MAXWELL-GAUSS. Que peut-on en déduire concernant le champ FE 7
z —>
. Ecrire la relation de MAXWELL-FARADAY, en déduire ’expression du champ F

. Exprimer alors le courant de conduction ? et de déplacement j_D).
. A partir de quelle valeur de w le courant 1p est-il prédominant sur j ?

Données :

En coordonnées cylindriques :

— Divergence : div A(r 0,z) =
— Rotationnel : rot A(r, 0, 2)
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Ensemble meésoscopique contenant un conducteur €lectrique et de la matiere isolante, traversee par un champ
electromagnétique
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Densité volumique d’énergie électromagnétique

On appelle densité volumique d’énergie électromagnétique, la grandeurs scalaire notée wey,, expri-
mée en J - m~3, qui vérifie :

oW, 1 1
Wem = ——otr = ~eoE? 4 —B? (13.14)
)% 2 2#0
. 7 7 . 7’ . W
densité vol. d’énergie électrique  densité vol. d’énergie magétique

NERGI
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DENSITE VOLUMIQU
J PUISSANCE JOUL

Densité volumique de puissance Joule

On appelle puissance JOULE volumique, ou densité volumique de puissance JOULE, la grandeur
scalaire notée p,, cédée par le champ électromagnétique au profit du milieu extérieur conducteur,
exprimée en W - m— qui vérifie :

57DJOULE
)%

&)

-2
Dy = ~ 7. (13.16)
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Vecteur de Poynting

_9
On appelle vecteur de POYNTING, la grandeur vectorielle notée II(M), exprimée en W-m™2 et
qui vérifie :
- =
ENB
O

I = (13.17)

Densité volumique de puissance rayonnée

On appelle puissance rayonnée volumique, ou densité volumique de puissance rayonnée, la grandeur
scalaire notée pray, cédée par le champ électromagnétique au profit du milieu extérieur conducteur,
exprimée en W - m—3 qui vérifie :

= divI (13.19)

Pray — SV
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Théoréeme de Poynting

L’énergie électromagnétique d’un volume fini de 'espace V', délimité par la surface fermée Sy, se
conserve selon I’équation dite théoréme de Poynting :

-

AdWem - - E/\B—>
dWem _ _ /// (] -E)dv - # ~2a (13.21)
dt Jv ) Hsy 1o

>y

WV
Perte de puissance Joule  Perte de puissance par rayonnement

Ce théoreme a également une expression locale :

OWerm — = l—f/\ §
—— =—9 - EF—div| — 13.22
5 J A (13.22)




