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Dynamique des fluides
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» A la fin de ce chapitre, vous devez étre capable de :

» Deécrire les écoulements en leur attribuant les qualificatifs compressibles
ou incompressibles, rotationnels ou non, visqueux ou Idéaux, laminaire ou
turbulent ;

Calculer le @ébit massigue ou volumique d'un écoulement de profil de
vitesse donne ;

Ftablir les relations de Bernoulli et Bernoulli généralisée et les utiliser dans

le cadre d'un écoulement en condurte :

Mesurer ou modeliser un perte de charge réguliere ou singuliere dans un
ecoulement en condurte.
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Ecoulement stationnaire

On appelle écoulement stationnaire, tout écoulement tel que le champ de vitesse v (M,t) d’un
volume de controle V est indépendant du temps.

Ecoulement uniforme

On appelle écoulement uniforme, tout écoulement tel que le champ de vitesse v’ (M, t) d'un volume

de controle V est identique en tout point de V.
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Volume de controle

On appelle volume de controle, noté ¥V, un domaine de ’espace fini dans lequel se trouve un fluide
statique ou en mouvement. Ce domaine est limité par un ensemble de surfaces de controle (réelle
ou fictives), dont la réunion est une surface fermée S(V).

Paroi solide )

Ecoulement ; ————— t: —————————————— 3 ::j _________

Volume de controle V J \' 2lat
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Viscosité

On appelle viscosité (dynamique) la grandeur physique 7 exprimée en [Pa -s| qui caractérise la
résistance a I’écoulement d’un fluide incompressible.

Fluide Huile Eau Air

Viscosité dynamique (Pa-s) 1,0 x 107! 1,0 x107% 1,8 x 107°

Fluide newtonien

On appelle fluide newtonien tout fluide dont la viscosité est une constante indépendante du gradient
de vitesse subit par le fluide.
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Ligne de courant
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On appelle ligne de courant une courbe de l’espace qui, a un instant ¢y donné, est en tout point

tangente au vecteur vitesse des particules fluides.
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Tube de courant

On appelle tube de courant la surface fictive définie par la réunion de l’ensemble de lignes de

courant issues d’un contour fermé.

Contour fermé

Ligne de courant
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Profil de vitesse
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On appelle profil de vitesse la représentation du champ de vitesse des particules fluides d’un fluide

en écoulement placées sur une ligne perpendiculaire a la vitesse moyenne.
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Débit massique

On appelle débit massique, exprimé en [kg -s~ 1], la masse de fluide dm qui traverse une surface

>, donnée par unité de temps dt. Cette grandeur est égale au flux de la quantité de mouvement

om
Dm:—: 7
dt /L“U

ou u est la masse volumique du fluide débitant.

. —_> A
volumique pv a travers ..

2|

Conservation du débit massique

En régime permanent, le débit massique a travers toute section d’une conduite, orientée selon le

sens de I’écoulement, se conserve.

D,, = cste
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Fluide incompressible

On appelle fluide incompressible, tout fluide dont le volume demeure constant sous 'action d’une
pression externe. La masse volumique d’un fluide incompressible vérifie :

w = o = cste

Débit volumique

On appelle débit volumique, exprimé en [m?/s], le volume de fluide qui traverse une surface X
donnée par unité de temps. Cette grandeur est égale au flux du vecteur vitesse ¥ a travers Y.

Dv:‘s—vz//?.cﬁ’
dt ~ JJs

Conservation du débit volumique

En régime permanent et pour un fluide incompressible, le débit volumique a travers toute section
d’une conduite, orientée selon le sens de 1’écoulement, se conserve.

D, = cste
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On s’intéresse a 1l’expérience de COUETTE dans
laquelle un fluide de masse volumique p est placé Paroi mobile

entre deux plaques horizontales de largeur L, =
I’'une étant _f)ixe et l'autre se déplacant a la vitesse Fluide 1,
constante Vj.

X

On observe I’évolution du profil de vitesse selon |

la verticale et on mesure une vitesse qui vérifie la Paroi immobile
relation suivante :

|%
v (2) = _?H

Uz, Vze€|0,H]
0, sinon

1. Calculer le débit massique a travers une section perpendiculaire a I’écoulement pour u = ug = cste,

\

2. Calculer le débit massique a travers une section parallele a 1’écoulement,
3. Calculer le débit massique a travers une section perpendiculaire a I’écoulement pour p = pg 7.
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Force surfacique de cisaillement

On appelle force surfacique de cisaillement la force par unité de surface, exercée par le fluide sur
une paroi, exprimée en [N - m~2] selon :

fsurf(M) = grad (7 UN)‘M ﬂ>T

oll U est le vecteur vitesse au point M, ¥ (resp. ©r) est le vecteur normal (resp. tangentiel) &
la paroi en M.

Fluide newtonien

On appelle fluide newtonien tout fluide dont la viscosité est une constante indépendante du gradient
de vitesse subit par le fluide.

Fluide parfait

On appelle fluide parfait, un fluide dont il est possible de décrire le mouvement sans prendre en
compte les effets de viscosité et de conduction thermique.
Dans le cas contraire, le fluide est dit visqueuz.
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CONSEQUENCES SUR L
TROPIL DEVITESS

Condition aux limites pour un fluide newtonien

Un fluide visqueux voit sa vitesse en paroi vérifier :
_9
%
v (M S Elatt) — Vparoi

ou Xt est la paroi latérale du volume de controle, et Vparoi la vitesse de la paroi.

Condition aux limites pour un fluide parfait

Un fluide parfait voit sa vitesse en paroi vérifier :

W(M € Elat)-ﬁM =0

9
oll X4t est la paroi latérale du volume de controle, 7y, la normale & la paroi et V paroi 1a vitesse
de la paroi.
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PLICATION 2

On s’intéresse a une paroi sur laquelle un fluide visqueux s’écoule. On constate expérimentalement

que ’écoulement se rattache a la vitesse nulle en paroi a travers une zone plus ou moins épaisse de fluide

appelée « couche limite ». On s’intéresse a 1’épaisseur de cette couche.

1. De quels parameétres physiques intensifs peut dépendre 1’épaisseur de la couche limite § ?

2. En déduire, par analyse dimensionnelle une expression de 1’épaisseur de couche limite.
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Ecoulement compressible & incompressible

Un écoulement est dit incompressible, lorsqu’il conserve le volume des particules fluides qui le
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traverse. Le champ de vitesse d’un écoulement incompressible vérifie :

VM eV, divi (M) =0

N\

A Topposé, un écoulement est dit compressible, si son champ de vitesse vérifie :

IM €V, divv (M) #0
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On donne le profil de vitesse en coordonnées cylindriques d’un écoulement de POISEUILLE dans un
cylindre d’axe Oz, de rayon R et de longueur L :

v('r) = ET

1. Faire un schéma de la géométrie dans laquelle s’écoule le fluide,
2. Tracer les lignes de courant de cet écoulement,

3. Tracer le profil de vitesse de cet écoulement en z =0, z = % et z
4. Etablir si cet écoulement est compressible ou incompressible.

ﬁ
En coordonnées cylindriques : div A = - or - 00
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Ecoulement rotationnel & irrotationnel

Un écoulement est dit irrotationnel, lorsque les particules fluides qui le traverse ne subissent pas
de rotation pure. Le champ de vitesse d'un tel écoulement vérifie :

rot v =0
A Popposé un écoulement dont le champ de vitesse vérifie

rot ¥ #£ 0

est dit rotationnel. Le vecteur rot ¥ donne le sens de rotation de la particule fluide.
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PLICATION 4

On donne le profil de vitesse en coordonnées cylindriques d’un écoulement de type cyclone. On note

a le rayon dit critique, et on placant une base de projection cylindrique d’axe vertical Oz. Le profil de

vitesse obéit a :

VoLug, Vre|0,aq]
VO%’LTé, sinon

v(r,6) =

1. Tracer le profil de vitesse de cet écoulement pour r € [0, 2al,

2. Etablir si cet écoulement est rotationnel ou irrotationnel.

’ . . —_> 2
En coordonnées cylindriques : rot A = (; 59

10A,




L AMINAIRE OU
;’tsjﬁsj TURBULENT ?

RS
—

Laminar flow

:-b A

Turbulent flow

L SE—

Turbulent flow (observed with an electric spark)

Nombre de Reynolds

On appelle nombre de REYNOLDS, le nombre adimensionnel défini par :

1WVoo D
U

Re =

ou g est la masse volumique du fluide, 1 sa viscosité, V,, sa vitesse caractéristique et D une
longueur caractéristique d’'une contrainte sur 1’écoulement.
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Conclure sur le caractere laminaire ou turbulent des écoulements suivants :

1. Robinet d’eau ouvert et remplissant une bouteille de 1L en 10s;

2. Bronchiole d’un diameétre de 1 mm traversée par un débit volumique d’air de 1,5 x 1073 L - min—!.
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Dispositif réel et tube de courant isolé par la pensee




THEOREME ET RELATION DE
BERNOULL

Théoreme de Bernoulli

Un fluide incompressible de masse volumique pg, parfait, soumis uniquement a la gravité et aux
forces de pression, et s’écoulant de maniere stationnaire entre deux points A et B d’'une méme
ligne de courant, vérifie la relation :

1 B
[—vz + 9z + e
2 1o

A

Relation de Bernoulli

Un fluide incompressible de masse volumique pg, parfait, soumis uniquement a la gravité et aux

forces de pression, et s’écoulant de maniere stationnaire et irrotationnelle, vérifie, sur n’importe
quel tube de courant, la relation suivante :

1 B
[—vz + 9z + a
2 1o
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Soit une conduite horizontale de section S variable, alimentée en fluide incompressible de masse
volumique u = pg par un débit massique D,,. On suppose que le profil de vitesse dans toute section
perpendiculaire a ’axe de la conduite est uniforme, de sorte que la pression est également uniforme sur
chaque section.

La conduite a la forme de la figure 7.1.

A

H,

~

S

2

Fig. 7.1 — Mesure de débit par effet Venturi

1. Etablir Pexpression de la pression p; qui regne dans la section ¢ en fonction de pg, g, g et H;.
2. On note AH = H{ — H», relier la pression p; a po, AH, ug et g.
3. Etablir une premiere expression de vy en fonction de v et de AH et g.

4. En déduire une expression du ratio g;
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Travail et puissance indiqué

On appelle puissance indiquée, notée P; et exprimée en [W], la puissance mécanique apportée par
un ensemble de parois mobiles a un fluide en écoulement.
On appelle travail indiqué, notée w; et exprimée en [J - kg™!], le travail mécanique massique apporté

par un ensemble de parois mobiles a un fluide en écoulement.
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Bl RELATION DE BERNOULL
o GENERALISEE

Relation de Bernoulli généralisée

Un fluide incompressible de masse volumique g, soumis a la gravité, aux forces visqueuses et

de pression et a un apport de puissance indiquée P;, et s’écoulant de maniere stationnaire et
irrotationnelle, vérifie la relation suivante :

L, p "2
Dm[—fu —I—gz—l——] =Pi + Py
2 Mo 1y,
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Pertes de charge régulieres et singulieres dans une conduite
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Perte de charge réguliere

On appelle perte de charge réguliére, exprimée en [Pa] la chute de pression due & un écoulement le
long d’une conduite. On ’exprime généralement selon :

<0

A*
2P < 0 avec Ap* = ,uov

Pn, reg — D, 1o 9

Avec o une constante empirique dépendant, entre autres, des dimensions de la conduite.

Perte de charge singuliere

On appelle perte de charge singuliére, exprimée en [Pa] la chute de pression due a toute singularité

dans 1’écoulement (coude, restriction de section...). On ’exprime généralement selon :

Ap* v?

<0
o 2

Avec (8 une constante empirique sans dimension qui dépend de la forme de la singularité.
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Friction Factor
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NOTION

Moody Diagram
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Diagramme de Moody

d'aprés la courbe § =

f(Dy)

1. Cloisons de séparation sous un angle de 45°

1 ("lm\nn\ de séparation

.
n W ‘I ¥ ., mm ‘ ]
o B " - . . . 2. Cloisons de séparation
‘ | 3 | 10«*‘ | verticales
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340 MEMENTO DES PERTES DE CHARGE
) ) Chapitre IX
Robinet & soupape normalisé avec cloisons de séparation
1 Diagramme 9.6
AH
¢ 3 est déterminé
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g
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2. Cloisons de séparation verticales




