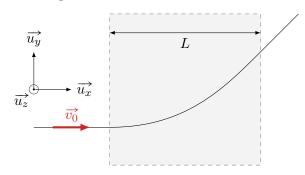
Dynamique des particules chargées

9.1 Problèmes de khôlle

9.1.1 Détermination d'un champ électrique

Un électron de masse m, d'énergie cinétique $\mathcal{E}_{c0} = 80 \,\text{keV}$ pénètre dans une cavité de longueur $L = 1 \,\text{m}$ avec une vitesse $\overrightarrow{v_0}$ horizontale. Un champ électrique uniforme \overrightarrow{E}_0 règne dans cette cavité et dévie l'électron selon la trajectoire représentée ci-dessous :



- 1. Déterminer la direction et le sens du champ électrostatique \overrightarrow{E}_0 .
- 2. Lors de sa traversée, l'énergie cinétique de l'électron varie de $|\Delta \mathcal{E}_c| = 10 \,\text{keV}$. Quel est le signe de $\Delta \mathcal{E}_c$?
- 3. Déterminer la norme E_0 .
- 4. Évaluer l'angle de déviation de la trajectoire en sortie de la zone de champ.

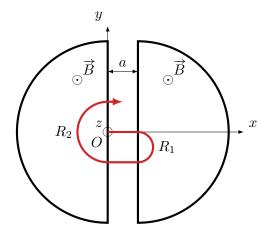
Données:

$$m = 9.11 \times 10^{-31} \,\mathrm{kg}$$
; $1 \,\mathrm{eV} = 1.6 \times 10^{-19} \,\mathrm{J}$.

Banque PT

9.1.2 Cyclotron

Un cyclotron est formé de deux demi-cylindres D_1 et D_2 , appelées « dees » de diamètre $d=11\,\mathrm{cm}$, séparés d'une zone étroite d'épaisseur a. Les dees sont situés dans l'entrefer d'un électroaimant qui fournit un champ magnétique uniforme $\overrightarrow{B}=B\overrightarrow{u_z}$. Une tension harmonique u d'amplitude $U_m=1800\,\mathrm{V}$ est appliquée dans l'entrefer, si bien qu'il y règne un champ électrique $\overrightarrow{E}=\frac{u}{a}\overrightarrow{u_x}$. On injecte des protons au sein de la zone intermédiaire avec une vitesse initiale négligeable.



- 1. Montrer qu'à l'intérieur d'un dee la norme de la vitesse des protons est constante.
- 2. En déduire le rayon de courbure R de la trajectoire des protons ayant une vitesse v.
- 3. En raisonnant par récurrence entre les demi-tours de rayon R_n et R_{n+1} , établir l'expression de la vitesse v_n en fonction de n, e, U_m et m.
- 4. En déduire l'expression du rayon R_n .
- 5. L'énergie cinétique du proton en sortie de cyclotron est $\mathcal{E}_c = 58 \text{ keV}$, en déduire la norme du champ magnétique.
- 6. Déterminer le nombre de tours parcourus par le proton.

Données:

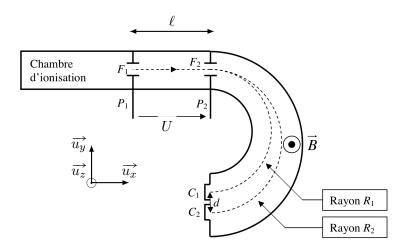
- Masse d'un proton $m = 1.7 \times 10^{-27} \,\mathrm{kg}$,
- Charge d'un proton $e = 1.6 \times 10^{-19} \,\mathrm{C}$.

Banque PT

9.1.3 Spectromètre de masse

Un spectromètre de masse est composé des éléments suivants :

- une chambre d'ionisation permettant de générer des ions de charge positive q = +e, de masse m_1 et m_2 et de vitesse initiale nulle,
- une chambre d'accélération où un champ $\overrightarrow{E} = -\frac{U}{\ell} \overrightarrow{u_x}$ est appliqué entre la fente F_1 et la fente F_2 ,
- une chambre de déviation où un champ magnétique $\vec{B} = B_0 \vec{u_z}$ est appliqué.



- 1. Quel signe doit avoir U pour permettre aux ions positifs d'entrer dans la chambre de déviation?
- 2. En déduire une expression de la vitesse des ions entrant dans la chambre de déviation en fonction de U, e et leurs masses respectives.

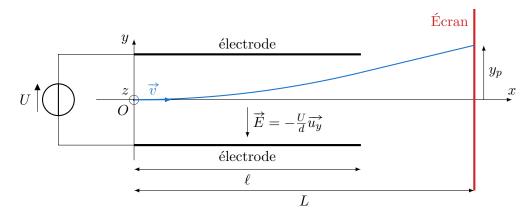
- 3. Montrer que l'énergie cinétique est une constante du mouvement dans la chambre de déviation.
- 4. En supposant une trajectoire circulaire dans la chambre de déviation, en déduire les rayons R_1 et R_2 des ions, ainsi que leur centre de rotation respectif.
- 5. En déduire la distance d qui doit séparer les deux collecteurs C_1 et C_2 pour permettre une séparation efficace des ions.
- 6. Calculer la tension U pour que la distance entre les collecteurs soit égale à $d=2.0\,\mathrm{cm}$.

Données:

$$B_0 = 0.1 \,\mathrm{T}$$
 $e = 1.6 \times 10^{-19} \,\mathrm{C}$ $m_1 = 390 \times 10^{-27} \,\mathrm{kg}$ $m_2 = 395 \times 10^{-27} \,\mathrm{kg}$

9.1.4 Déflection d'électrons

On étudie un système de déflexion d'électrons dans le champ électrique uniforme généré par deux électrodes parallèles. Les deux électrodes sont des plaques métalliques distantes de d selon l'axe Oy et de longueur ℓ selon l'axe Ox. On maintient entre les électrodes une tension électrique U qui crée un champ électrique \overrightarrow{E} uniforme et constant, égal à $-\frac{U}{d}\overrightarrow{u_y}$ entre les électrodes. Au-delà, pour $x > \ell$, le champ électrique est supposé nul. Un écran est placé en x = L. Une cathode émet des électrons de masse m et de charge q depuis le point O avec une vitesse initiale $V\overrightarrow{u_x}$.



1. Montrer que la vitesse des électrons selon x est constante. Donner son expression.

On s'intéresse au mouvement des électrons entre les deux électrodes, pour $x < \ell$, lorsqu'ils sont soumis au champ électrique.

- 2. Établir l'expression de leur accélération selon l'axe Oy.
- 3. En déduire l'expression de y(t). Quel type de trajectoire retrouve-t-on?
- 4. Exprimer l'équation cartésienne de cette parabole sous la forme : $y = \frac{x^2}{\alpha}$ où α est une distance que l'on exprimera en fonction des données du problème.
- 5. Exprimer la vitesse minimale à donner à l'électron pour qu'il ne touche pas les électrodes lors de sa trajectoire.

On s'intéresse désormais à la phase du mouvement entre les électrodes et l'écran.

- 6. Montrer que la trajectoire des électrons est une droite.
- 7. Exprimer le coefficient directeur de cette droite, dans le repère Oxy, en fonction de ℓ et α .
- 8. En déduire que l'ordonnée du point d'impact y_p sur l'écran est proportionnelle à U, de la forme $y_p = kU$, où on exprimera le facteur k en fonction des données du problème.