Introduction à la thermodynamique

1.1 Problèmes de khôlle

1.1.1 Équilibre de gaz

Un récipient (A) de volume $V_A = 1$ L, contient de l'air à $T_A = 15$ °C sous une pression $P_A = 720$ mmHg. Un autre récipient (B) de volume $V_B = 1$ L, contient également de l'air à $T_B = 20$ °C sous une pression $P_B = 45$ bar.

On réunit (A) et (B) par un tuyau de volume négligeable et on laisse l'équilibre se réaliser à $T=15\,^{\circ}\text{C}$. On modélise l'air par un gaz parfait.

- 1. Quelle est la pression finale de l'air dans les deux récipients?
- 2. Quelle masse d'air a été transférée et dans quel sens?

Données:

- Masse molaire de l'air : $M = 29 \,\mathrm{g \cdot mol^{-1}}$;
- -1 bar = 760 mmHg.

1.1.2 Système à double piston

On étudie le dispositif représenté sur la figure 1.1. Les deux cylindres horizontaux, remplis d'un gaz parfait, sont munis de pistons mobiles d'aires respectives S et 2S, reliés par une tige horizontale rigide dont on négligera la section. L'ensemble est en équilibre mécanique et thermique avec l'atmosphère extérieure, de pression p_e et de température T_e .

L'état initial t=0 est un état d'équilibre caractérisé par : $p_1=p_2=p_0$; $V_1=V_2=V_0$ et $T_1=T_2=T_0$.

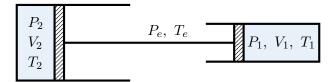


Fig. 1.1

1. Par un système non décrit ici, on rompt l'équilibre mécanique et on fait varier le volume V_1 . Établir un lien entre p_1 et p_0 , V_1 , V_0 , T_0 et T_e d'une part, et entre p_2 et p_0 , V_2 , V_0 , T_0 et T_e d'autre part.

2. La rupture d'équilibre mécanique se traduit par le déplacement du double piston d'une distance x vers la droite. Établir un lien entre les volumes $V_1(x)$, $V_2(x)$ et V_0 .

La température T_e restant fixe, on modifie la pression extérieur p_e et les deux pistons se déplacent jusqu'à atteindre un nouvel état d'équilibre.

3. Établir un lien entre la nouvelle pression p_e et les nouvelles pressions p_1 et p_2 .

Les deux grandeurs extérieures T_e et p_e prennent des valeurs quelconques, a priori différentes des valeurs initiales, et le système atteint un nouvel état d'équilibre. On note : $X_2 = \frac{V_2}{V_0}$, $X_1 = \frac{V_1}{V_0}$ et $\alpha = \frac{T_e p_0}{T_0 p_e}$.

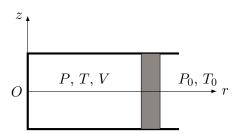
- 4. Déterminez les valeurs de X_1 et X_2 à l'équilibre en fonction de α et en déduire l'expression de V_1 et V_2 en fonction de α et V_0 .
- 5. Faites de même pour les pression p_1 et p_2 , en fonction de α et p_e .

La pression extérieure est maintenant maintenue égale à p_0 , et la température varie légèrement et devient $T_e = T_0(1 + \varepsilon)$ avec $\varepsilon \ll 1$.

6. Déterminer V_1 et V_2 et le volume total de gaz V sous la forme d'une fonction affine de T_e .

1.1.3 **Ç**a tourne!

Un cylindre calorifugé est mis en rotation de manière progressive à partir de la vitesse nulle jusqu'à la vitesse angulaire $\omega =$ cste autour d'un axe Oz vertical. Un piston mobile de masse m et de section S glisse sans frottement à l'intérieur du cylindre où il emprisonne une quantité d'air initialement caractérisée par les conditions $\{P_0, T_0, V_0\}$. L'air sera considéré comme un gaz parfait.



- Faire un bilan des forces appliquées au piston. En déduire une expression de la pression d'équilibre en fonction des données du problème.
- 2. En déduire une condition d'existence de la position d'équilibre. On notera α le rayon limite ainsi défini.
- 3. On suppose que la transformation est adiabatique et on admettra qu'alors $PV^{\gamma} = \text{cste}$. En déduire l'expression de P_f , T_f en fonction de la position de départ r_0 du piston et de sa position d'équilibre r_f , puis la valeur de ω
- 4. Établir la position r_f à la même vitesse angulaire mais pour une transformation isotherme. Conclure.

Données:

- $-P_0 = 1 \text{ bar}; T_0 = 293 \text{ K};$
- $-S = 10 \,\mathrm{cm}^2$; $r_0 = 10 \,\mathrm{cm}$ et $r_f = 12 \,\mathrm{cm}$; $m = 1 \,\mathrm{kg}$;
- $\gamma = 1, 4.$